

C. U. SHAH UNIVERSITY WADHWAN CITY FACULTY OF SCIENCES

B.Sc.

SEM - IV

Syllabi (CBCS) of Mathematics

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

SEMESTER: IV

COURSE: B.Sc. SUBJECT NAME: Differential and Integral Calculus SUBJECT CODE: 4SC04DIC1 Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
	Theory						Practi					
Th	Tu	Pr	Total			Sessional University Exam Exam Internal		University	Total Marks			
					Marks	Hrs	Marks	Hrs	Pr	τw		
3	0	0	3	3	30	1.5	70	3				100

Objectives: - The main objectives of this course are to study gradient, divergence curl, ILine integral, surface integral and to study theorems related to them.

Prerequisites:-Knowledge of differentiation, integration and basic calculus.

Sr.	Course Contents	Hours					
No.							
1	First order partial differential equation, Formation of partial differential equation, Linear equations of first order.	5					
2	Curves, Surfaces, Differentiation along a curve, Applications to geometry: Curvature in Cartesian and polar co-ordinates						
	Singular points for plane curves especially points of inflection and double points.	8					
3	Equations of Tangent and normal to the curves, Tangent plane and normal line to the surfaces, Gradient, Divergence and Curl of vectors.	8					
4	Double integral, Change of order, Triple integral, Change of variable in multiple integral.	12					
5	Line integral, Surface integral, Green's theorem, Gauss – Divergence theorem, Stoke's theorem (Without proof), Examples based on theorems	12					

Learning Outcomes:-After successful completion of this course students will be able to solve any problem related to differential and integral calculus.

Books Recommended:-

- 1. 'Differential Calculus', Shanti Narayan & P. K. Mittal, S. Chand.
- 2. 'Integral Calculus', Shanti Narayan & P. K. Mittal, S. Chand.
- 3. 'Advanced Calculus', David Widder, Prentice hall, New Delhi.
- 4. 'Advanced Calculus Volume-II, T. M. Apostol, Blaisdoll.
- 5. 'Partial Differential Equation', **T. Amarnath**, *Narosa*.
- 6. 'Calculus', James Stewart, *Brooks/Cole publishing company*.
- 7. 'Applied Calculus', S. T. Tan, Brooks/Cole publishing company.

- 1. <u>http://math.stackexchange.com/questions/523074/differential-calculus-vs-integral-calculus</u>
- 2. <u>https://www.khanacademy.org/math/multivariable-</u> <u>calculus/line_integrals_topic/greens_theorem/v/green-s-theorem-example-1</u>
- 3. <u>http://www.math24.net/greens-formula.html</u>
- 4. <u>http://www.math24.net/stokes-theorem.html</u>
- 5. <u>http://youtube.com/watch?v=W0u0AVa-xig</u>
- 6. <u>http://mathinsight.org/triple_integral_examples</u>
- 7. <u>http://mathinsight.org/triple_integral_introduction</u>

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

COURSE: B.Sc. SUBJECT NAME: Linear Algebra-II Teaching & Evaluation Scheme:-

SEMESTER: IV SUBJECT CODE: 4SC04LIA1

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory					Practi	cal	
Th	Tu	Pr	Total		Sessional University Exam Exam		Internal		University	Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	TW		
3	0	0	3	3	30	1.5	70	3				100

Objectives: - The main objectives of this course are

- To provide students with a good understanding of the concepts and methods of linear algebra
- To help the students develop the ability to solve problems using linear algebra.
- To connect linear algebra to other fields both within and without mathematics.

Prerequisites:-

Students must be familiar with the properties of set theory, function, Determinant and Matrices. Students should have basic knowledge of vector calculus.

Sr.	Course Contents	Hours
No.		
1	Orthogonality, Geometrical application, orthogonal projection onto a	9
	line, orthonormal basis, orthogonal complements and projections.	9
2	Linear functionals and hyper-planes, orthogonal transformations,	9
	associated co-ordinates, reflections, orthogonal map of the plane.	9
3	Determinants and its properties, Value of a determinant, Basic results-	
	Laplace expansion, Cramer's rule, Application to geometry, orientation	9
	and vector product.	

4	Rotation of axes of conics, Review Eigenvalues and eigenvectors,	٥								
	Diagonalization of symmetric matrices.									
5	Conics and quadrics, classification of Quadrics, computational examples.	9								

Learning Outcomes:-

- Analyze real world scenarios to recognize when vectors, matrices, or linear systems are appropriate, formulate problems about the scenarios, creatively model these scenarios
- Work with vectors, matrices, or linear systems symbolically and geometrically in various situations
- Give examples and non-examples of linear transformations, evaluate the matrix representations of a linear transformation

Books Recommended:-

- 1. 'Linear Algebra A Geometric Approach', S. Kumaresan, Prentice Hall, New Delhi.
- 2. 'Finite Dimensional Vector spaces', **P. Halmos,** *Literary Licensing, LLC.*
- 3. 'Matrix and Linear algebra', K. B. Dutta, Prentice Hall, New Delhi.
- 4. 'Linear Algebra-A problem book', P. R. Halmos, Cambridge university Press.
- 5. 'Linear Algebra', **G. Paria**, New central book agency-Calcutta.
- 6. 'Linear algebra and applications', Gilbert Strang Thomson, Cole publishing company.

- 1. <u>http://www.math.clarku.edu/~djoyce/ma130/vectorspace.pdf</u>
- 2. http://www.saylor.org/courses/ma211/
- 3. <u>http://en.wikipedia.org/wiki/Linear_algebra</u>
- 4. <u>https://www.khanacademy.org/math/linear-algebra</u>

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

COURSE: B.Sc. SUBJECT NAME: Numerical Methods Teaching & Evaluation Scheme:-

SEMESTER: IV SUBJECT CODE: 4SC04NUM1

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory					cal		
Th	Tu	Pr	Total		Sessional University Exam Exam		Internal		University	Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	TW		
3	0	0	3	3	30	1.5	70	3				100

Objectives: -The main objectives of this course are

- Find the Lagrange Interpolation Polynomial for any given set of points.
- Use finite differences for interpolation, differentiation, etc.

Prerequisites:-

Basic knowledge of Linear Algebra and differential equations.

Sr.	Course Contents	Hours
No.		
1	Estimation of error in differentiation formula based on Newton's	9
	forward and backward formulae, and Stirling's formula.	9
2	Differentiation formulae of un-equispaced arguments, General	9
	quadrature formula, Trapezoidal rule, Simpson's rule, Weddel's rule.	9
3	Quadrature formula based on Lagrange's formula, Newton-Cotes	
	formula, Numerical integration formula based on central difference	9
	formulae, Euler-Maclaurin sum formula.	
4	Algebraic and transcendental equations, Numerical solution of	
	differential equations of first order; Graphical method, method of	9
	bisection, method of iteration, Newton-Raphson formula, Newton's	9
	iterative formula, method of false position.	

5	Euler's method, Euler's modified method, Picard's method.	0
	Taylor's series method, Runge-Kutta method, Milne's method.	9

Learning Outcomes:-

After successful completion of this course students will be able to

- Analyze errors and have an understanding of error estimation.
- Be able to use polynomials in several ways to approximate both functions and data, and to match the type of polynomial approximation to a given type of problem.
- Be able to solve equations in one unknown real variable using iterative methods and to understand how long these methods take to converge to a solution.
- Derive formulas to approximate the derivative of a function at a point, and formulas to compute the definite integral of a function of one or more variables.
- Choose and apply any of several modern methods for solving systems of initial value problems based on properties of the problem.

Books Recommended:-

- 1. 'Numerical Analysis and Computational Procedures', **S. A. Moolah**,*New Central Book Agency (P) Ltd., Calcutta.*
- 2. 'Elementary Numerical analysis', S. S. Sastry, Prentice Hall, New Delhi.
- 3. 'Numerical mathematical analysis 6th edition', **Scarborough**, *Oxford& IBH*.
- 4. 'Numerical analysis', **S.Kunz,** *Mcgraw Hill Book New York.*
- 5. 'Numerical Analysis', **Richard Burden and J. Douglas Thomson,** *Cole Pub Co; 6th edition* (*December 24, 1996*)

- 1. <u>http://mathfaculty.fullerton.edu/mathews/numerical.html</u>
- 2. <u>http://en.wikipedia.org/wiki/Numerical analysis</u>
- 3. <u>http://ocw.mit.edu/courses/mathematics/18-330-introduction-to-numerical-analysis-spring-2012/</u>
- 4. http://math.mercyhurst.edu/~platte/syllabi/numerical analysis spring 09 10.html

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

COURSE: B.Sc. SUBJECT NAME: Mathematical Finance

SEMESTER: IV SUBJECT CODE: 4SC04MAF1

Teaching & Evaluation Scheme:-

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
						The	ory		Practical			
Th	Tu	Pr	Total		Sessio Exan	-	Univer Exar	•	Internal		University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr	τw		
3	0	0	3	3	30	1.5	70	3				100

Objectives: - The main objectives of this course are

- To understand the growth of market value and the variabeles depenging upon .
- To formulate profit and loss as mathematical tool.
- To understand the portfolio diagram with different models like Markowitz model.

Prerequisites:- Students must be familiar with the properties of set function, Derivative ,integration etc. and basic techniques of numerical methods and statistics.

Course outline:-

Sr.	Course Contents	Hours							
No.									
1	Basic principles: Comparison, arbitrage and risk aversion, Interest (simple	9							
	and compound, discrete and continuous).								
2	Time value of money, inflation, net present value, internal rate of return								
	(calculation by bisection and Newton-Raphson methods).								
3	Comparison of NPV and IRR. Bonds, bond prices and yields. Floating-rate	9							
	bonds, immunization.								
4	Asset return, short selling, portfolio return, (brief introduction to	9							
	expectation, variance, covariance and correlation),								

Syllabi of Mathematics of B.Sc. Sem.–IV WEF Jun 2016 - Page 8 of 12

5	Random returns, portfolio mean return and variance, diversification,	9
	portfolio diagram, feasible set, Markowitz model (review of Lagrange	
	multipliers for 1 and 2 constraints).	

Learning Outcomes:- After the successful completion of the course, students will be able to

- Understand the growth of market value and the variables depending upon.
- Formulate profit and loss as mathematical tool.
- Understand the portfolio diagram with different models like Markowitz mode

Books Recommended:-

- 1. 'Investment Science', D. G. Luenberger, Oxford University Press, Delhi, 1998.
- 2. 'Options, Futures and Other Derivatives', J. C. Hull, Prentice-Hall India, Indian reprint, 2006.
- 3. 'An Elementary Introduction to Mathematical Finance', **S. Ross,** *Cambridge University Press, USA, 2003.*

- 1. <u>https://en.wikipedia.org/wiki/Mathematical_finance.</u>
- 2. <u>onlinelibrary.wiley.com > Mathematics > Business & Finance</u>
- 3. <u>https://www.coursera.org/course/mathematicalmethods</u>
- 4. <u>https://plus.maths.org/content/what-financial-mathematics</u>

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

COURSE: B.Sc. SUBJECT NAME: Mathematics Practical-IV Teaching & Evaluation Scheme:-

SEMESTER: IV SUBJECT CODE: 4SC04MAP1

Теа	ching	hours	/week	Credit	Evaluation Scheme/semester							
					Theory					Practi	cal	
Th	Tu	Pr	Total		Sessional University Exam Exam Internal		University	Total Marks				
					Marks	Hrs	Marks	Hrs	Pr	TW		
0	0	6	6	3					20	10	70	100

Objectives: - The main objectives of this course are

- To solve algebraic and transcendental equation by using different methods
- Use integration to find area of region and volume of surface.

Prerequisites:-

Basic knowledge of differentiation, integration, calculus and differential equations.

Sr.	Course Contents
No.	
1	Problems based on first order partial differential equation, formation of partial
	differential equation.
2	Problems based on gradient, divergence & curl of vector in R^3 .
3	Problems based on double integral, Triple integral, Change of variable in multiple
	integral.
4	Problems based on line integral, surface integral, Green's theorem, Gauss – Divergence
	theorem, Stoke's theorem.
5	Problems based on angles between two curves, radius of curvature for Cartesian,
	parametric and polar equations, arc length of the curves given in Cartesian, parametric
	and polar forms
6	Problems based on orthogonalization, angles, Gram schmidth orthogonalisation process.

7	Problems based on geometric applications orthogonal linear transformation.
8	Problems based on determinant, diagonalization of symmetric matrices, canonical form of conics and quadratics.
9	Problems based on bisection method, method of iteration, Newton – Raphson formula, Newton's iterative formula and method of false position.
10	Problems based on Trapezoidal rule, Simpson's $\frac{1}{3}$ rule, Simpson's $\frac{3}{8}$ rule, Weddle's rule,
	Taylor's series method, Picard's method, Euler's Method, Runge – Kutta method.
	OR
9	Problems based on mathematical finance.
10	Problems based on mathematical finance.

Learning Outcomes:-

After successful completion of this course student will be able to

- Solve any problem related to differential or integral calculus.
- Analyze errors and have an understanding of error estimation.
- Be able to use polynomials in several ways to approximate both function and data, and to much the type of polynomial approximation to a given type of problem.
- Be able to solve equations in one unknown real variable using iterative methods and to understand how long these methods take to converge to a solution.
- Derive formulas to approximate the derivative of a function at a point and formulas to compute the definite integral of a function of one or more variables.
- Choose and apply any of several modern methods for solving systems of initial value problems based on properties of the problem.

Books Recommended:-

- 1. 'Numerical Analysis and Computational Procedures', **S. A. Moolah**, New Central Book Agency (P) Ltd., Calcutta.
- 2. 'Elementary Numerical analysis', S. S. Sastry, Prentice Hall, New Delhi.
- 3. 'Advanced Calculus', David Widder, Prentice hall, New Delhi.
- 4. 'Advanced Calculus Volume-II, T. M. Apostol, Blaisdoll.
- 5. 'Differential Calculus', Shanti Narayan & P. K. Mittal, S. Chand.
- 6. 'Integral Calculus', Shanti Narayan & P. K. Mittal, S. Chand.
- 7. 'Partial Differential Equation', **T. Amarnath**, *Narosa*.
- 8. 'Linear Algebra A Geometric Approach', S. Kumaresan, Prentice Hall, New Delhi.
- 9. 'Finite Dimensional Vector spaces', P. Halmos, Literary Licensing, LLC.
- 10. 'Matrix and Linear algebra', K. B. Dutta, Prentice Hall, New Delhi.
- 11. 'Linear Algebra-A problem book', **P. R. Halmos,** *Cambridge university Press.*

Syllabi of Mathematics of B.Sc. Sem.-IV WEF Jun 2016 - Page 11 of 12

- 12. 'Investment Science', D. G. Luenberger, Oxford University Press, Delhi, 1998.
- 13. 'Options, Futures and Other Derivatives', J. C. Hull, Prentice-Hall India, Indian reprint, 2006.
- 14. 'An Elementary Introduction to Mathematical Finance', **S. Ross,** *Cambridge University Press, USA, 2003*

Notes:-

- 1. Problem solving skill in mathematics is an important aspect in the teaching of mathematics.
- 2. There would be problem solving session of six hours per week and they will be conducted in batches.